theorem subpos (a b: nat): $ a < b <-> 0 < b - a $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a < b <-> ~b <= a) -> (~b <= a <-> 0 < b - a) -> (a < b <-> 0 < b - a) |
2 |
|
ltnle |
a < b <-> ~b <= a |
3 |
1, 2 |
ax_mp |
(~b <= a <-> 0 < b - a) -> (a < b <-> 0 < b - a) |
4 |
|
bitr4 |
(~b <= a <-> ~b - a = 0) -> (0 < b - a <-> ~b - a = 0) -> (~b <= a <-> 0 < b - a) |
5 |
|
noteq |
(b <= a <-> b - a = 0) -> (~b <= a <-> ~b - a = 0) |
6 |
|
lesubeq0 |
b <= a <-> b - a = 0 |
7 |
5, 6 |
ax_mp |
~b <= a <-> ~b - a = 0 |
8 |
4, 7 |
ax_mp |
(0 < b - a <-> ~b - a = 0) -> (~b <= a <-> 0 < b - a) |
9 |
|
lt01 |
0 < b - a <-> b - a != 0 |
10 |
9 |
conv ne |
0 < b - a <-> ~b - a = 0 |
11 |
8, 10 |
ax_mp |
~b <= a <-> 0 < b - a |
12 |
3, 11 |
ax_mp |
a < b <-> 0 < b - a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)