theorem lesubadd2 (a b c: nat): $ a - b <= c <-> a <= b + c $;
Step | Hyp | Ref | Expression |
1 |
|
eor |
(a <= b -> a - b <= c -> a <= b + c) -> (b <= a -> a - b <= c -> a <= b + c) -> a <= b \/ b <= a -> a - b <= c -> a <= b + c |
2 |
|
leaddid1 |
b <= b + c |
3 |
|
letr |
a <= b -> b <= b + c -> a <= b + c |
4 |
2, 3 |
mpi |
a <= b -> a <= b + c |
5 |
4 |
a1d |
a <= b -> a - b <= c -> a <= b + c |
6 |
1, 5 |
ax_mp |
(b <= a -> a - b <= c -> a <= b + c) -> a <= b \/ b <= a -> a - b <= c -> a <= b + c |
7 |
|
leadd2 |
a - b <= c <-> b + (a - b) <= b + c |
8 |
|
pncan3 |
b <= a -> b + (a - b) = a |
9 |
8 |
leeq1d |
b <= a -> (b + (a - b) <= b + c <-> a <= b + c) |
10 |
7, 9 |
syl5bb |
b <= a -> (a - b <= c <-> a <= b + c) |
11 |
10 |
bi1d |
b <= a -> a - b <= c -> a <= b + c |
12 |
6, 11 |
ax_mp |
a <= b \/ b <= a -> a - b <= c -> a <= b + c |
13 |
|
leorle |
a <= b \/ b <= a |
14 |
12, 13 |
ax_mp |
a - b <= c -> a <= b + c |
15 |
|
leeq2 |
b + c - b = c -> (a - b <= b + c - b <-> a - b <= c) |
16 |
|
pncan2 |
b + c - b = c |
17 |
15, 16 |
ax_mp |
a - b <= b + c - b <-> a - b <= c |
18 |
|
lesub1i |
a <= b + c -> a - b <= b + c - b |
19 |
17, 18 |
sylib |
a <= b + c -> a - b <= c |
20 |
14, 19 |
ibii |
a - b <= c <-> a <= b + c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)