Theorem lesubadd | index | src |

theorem lesubadd (a b c: nat): $ a - b <= c <-> a <= c + b $;
StepHypRefExpression
1 bitr
(a - b <= c <-> a <= b + c) -> (a <= b + c <-> a <= c + b) -> (a - b <= c <-> a <= c + b)
2 lesubadd2
a - b <= c <-> a <= b + c
3 1, 2 ax_mp
(a <= b + c <-> a <= c + b) -> (a - b <= c <-> a <= c + b)
4 leeq2
b + c = c + b -> (a <= b + c <-> a <= c + b)
5 addcom
b + c = c + b
6 4, 5 ax_mp
a <= b + c <-> a <= c + b
7 3, 6 ax_mp
a - b <= c <-> a <= c + b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, add0, addS)