Theorem ltaddsub | index | src |

theorem ltaddsub (a b c: nat): $ a + b < c <-> a < c - b $;
StepHypRefExpression
1 bitr4
(a + b < c <-> ~c <= a + b) -> (a < c - b <-> ~c <= a + b) -> (a + b < c <-> a < c - b)
2 ltnle
a + b < c <-> ~c <= a + b
3 1, 2 ax_mp
(a < c - b <-> ~c <= a + b) -> (a + b < c <-> a < c - b)
4 bitr
(a < c - b <-> ~c - b <= a) -> (~c - b <= a <-> ~c <= a + b) -> (a < c - b <-> ~c <= a + b)
5 ltnle
a < c - b <-> ~c - b <= a
6 4, 5 ax_mp
(~c - b <= a <-> ~c <= a + b) -> (a < c - b <-> ~c <= a + b)
7 lesubadd
c - b <= a <-> c <= a + b
8 7 noteqi
~c - b <= a <-> ~c <= a + b
9 6, 8 ax_mp
a < c - b <-> ~c <= a + b
10 3, 9 ax_mp
a + b < c <-> a < c - b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, add0, addS)