theorem ltaddsub2 (a b c: nat): $ a + b < c <-> b < c - a $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a + b < c <-> b + a < c) -> (b + a < c <-> b < c - a) -> (a + b < c <-> b < c - a) |
2 |
|
lteq1 |
a + b = b + a -> (a + b < c <-> b + a < c) |
3 |
|
addcom |
a + b = b + a |
4 |
2, 3 |
ax_mp |
a + b < c <-> b + a < c |
5 |
1, 4 |
ax_mp |
(b + a < c <-> b < c - a) -> (a + b < c <-> b < c - a) |
6 |
|
ltaddsub |
b + a < c <-> b < c - a |
7 |
5, 6 |
ax_mp |
a + b < c <-> b < c - a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)