Theorem ltsubadd | index | src |

theorem ltsubadd (a b c: nat): $ b <= a -> (a - b < c <-> a < c + b) $;
StepHypRefExpression
1 ltadd1
a - b < c <-> a - b + b < c + b
2 npcan
b <= a -> a - b + b = a
3 2 lteq1d
b <= a -> (a - b + b < c + b <-> a < c + b)
4 1, 3 syl5bb
b <= a -> (a - b < c <-> a < c + b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, peano5, addeq, add0, addS)