Theorem ltnle | index | src |

theorem ltnle (a b: nat): $ a < b <-> ~b <= a $;
StepHypRefExpression
1 ltlenle
a < b <-> a <= b /\ ~b <= a
2 anr
a <= b /\ ~b <= a -> ~b <= a
3 1, 2 sylbi
a < b -> ~b <= a
4 leorlt
b <= a \/ a < b
5 4 conv or
~b <= a -> a < b
6 3, 5 ibii
a < b <-> ~b <= a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano1, peano2, peano5, addeq, add0, addS)