Theorem leorle | index | src |

theorem leorle (a b: nat): $ a <= b \/ b <= a $;
StepHypRefExpression
1 ltle
b < a -> b <= a
2 leorlt
a <= b \/ b < a
3 2 conv or
~a <= b -> b < a
4 1, 3 syl
~a <= b -> b <= a
5 4 conv or
a <= b \/ b <= a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano1, peano2, peano5, addeq, add0, addS)