theorem ltsubeq0 (a b: nat): $ a < b -> a - b = 0 $;
Step | Hyp | Ref | Expression |
1 |
|
ltnle |
a < b <-> ~b <= a |
2 |
|
nlesubeq0 |
~b <= a -> a - b = 0 |
3 |
1, 2 |
sylbi |
a < b -> a - b = 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)