theorem eqallt1 (a b: nat) {i: nat}: $ a = b <-> A. i (i < a <-> i < b) $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a = b <-> A. i (a <= i <-> b <= i)) -> (A. i (a <= i <-> b <= i) <-> A. i (i < a <-> i < b)) -> (a = b <-> A. i (i < a <-> i < b)) |
2 |
|
eqalle2 |
a = b <-> A. i (a <= i <-> b <= i) |
3 |
1, 2 |
ax_mp |
(A. i (a <= i <-> b <= i) <-> A. i (i < a <-> i < b)) -> (a = b <-> A. i (i < a <-> i < b)) |
4 |
|
bitr4 |
(a <= i <-> b <= i <-> (~a <= i <-> ~b <= i)) -> (i < a <-> i < b <-> (~a <= i <-> ~b <= i)) -> (a <= i <-> b <= i <-> (i < a <-> i < b)) |
5 |
|
con3bb |
a <= i <-> b <= i <-> (~a <= i <-> ~b <= i) |
6 |
4, 5 |
ax_mp |
(i < a <-> i < b <-> (~a <= i <-> ~b <= i)) -> (a <= i <-> b <= i <-> (i < a <-> i < b)) |
7 |
|
bieq |
(i < a <-> ~a <= i) -> (i < b <-> ~b <= i) -> (i < a <-> i < b <-> (~a <= i <-> ~b <= i)) |
8 |
|
ltnle |
i < a <-> ~a <= i |
9 |
7, 8 |
ax_mp |
(i < b <-> ~b <= i) -> (i < a <-> i < b <-> (~a <= i <-> ~b <= i)) |
10 |
|
ltnle |
i < b <-> ~b <= i |
11 |
9, 10 |
ax_mp |
i < a <-> i < b <-> (~a <= i <-> ~b <= i) |
12 |
6, 11 |
ax_mp |
a <= i <-> b <= i <-> (i < a <-> i < b) |
13 |
12 |
aleqi |
A. i (a <= i <-> b <= i) <-> A. i (i < a <-> i < b) |
14 |
3, 13 |
ax_mp |
a = b <-> A. i (i < a <-> i < b) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)