theorem eqalle2 (a b: nat) {i: nat}: $ a = b <-> A. i (a <= i <-> b <= i) $;
Step | Hyp | Ref | Expression |
1 |
|
leeq1 |
a = b -> (a <= i <-> b <= i) |
2 |
1 |
iald |
a = b -> A. i (a <= i <-> b <= i) |
3 |
|
leid |
b <= b |
4 |
|
leeq2 |
i = b -> (a <= i <-> a <= b) |
5 |
|
leeq2 |
i = b -> (b <= i <-> b <= b) |
6 |
4, 5 |
bieqd |
i = b -> (a <= i <-> b <= i <-> (a <= b <-> b <= b)) |
7 |
6 |
eale |
A. i (a <= i <-> b <= i) -> (a <= b <-> b <= b) |
8 |
3, 7 |
mpbiri |
A. i (a <= i <-> b <= i) -> a <= b |
9 |
|
leid |
a <= a |
10 |
|
leeq2 |
i = a -> (a <= i <-> a <= a) |
11 |
|
leeq2 |
i = a -> (b <= i <-> b <= a) |
12 |
10, 11 |
bieqd |
i = a -> (a <= i <-> b <= i <-> (a <= a <-> b <= a)) |
13 |
12 |
eale |
A. i (a <= i <-> b <= i) -> (a <= a <-> b <= a) |
14 |
9, 13 |
mpbii |
A. i (a <= i <-> b <= i) -> b <= a |
15 |
8, 14 |
leasymd |
A. i (a <= i <-> b <= i) -> a = b |
16 |
2, 15 |
ibii |
a = b <-> A. i (a <= i <-> b <= i) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)