Theorem eqalle2 | index | src |

theorem eqalle2 (a b: nat) {i: nat}: $ a = b <-> A. i (a <= i <-> b <= i) $;
StepHypRefExpression
1 leeq1
a = b -> (a <= i <-> b <= i)
2 1 iald
a = b -> A. i (a <= i <-> b <= i)
3 leid
b <= b
4 leeq2
i = b -> (a <= i <-> a <= b)
5 leeq2
i = b -> (b <= i <-> b <= b)
6 4, 5 bieqd
i = b -> (a <= i <-> b <= i <-> (a <= b <-> b <= b))
7 6 eale
A. i (a <= i <-> b <= i) -> (a <= b <-> b <= b)
8 3, 7 mpbiri
A. i (a <= i <-> b <= i) -> a <= b
9 leid
a <= a
10 leeq2
i = a -> (a <= i <-> a <= a)
11 leeq2
i = a -> (b <= i <-> b <= a)
12 10, 11 bieqd
i = a -> (a <= i <-> b <= i <-> (a <= a <-> b <= a))
13 12 eale
A. i (a <= i <-> b <= i) -> (a <= a <-> b <= a)
14 9, 13 mpbii
A. i (a <= i <-> b <= i) -> b <= a
15 8, 14 leasymd
A. i (a <= i <-> b <= i) -> a = b
16 2, 15 ibii
a = b <-> A. i (a <= i <-> b <= i)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano1, peano2, peano5, addeq, add0, addS)