Theorem bieqd | index | src |

theorem bieqd (a b c d e: wff):
  $ a -> (b <-> c) $ >
  $ a -> (d <-> e) $ >
  $ a -> (b <-> d <-> (c <-> e)) $;
StepHypRefExpression
1 hyp h1
a -> (b <-> c)
2 hyp h2
a -> (d <-> e)
3 1, 2 imeqd
a -> (b -> d <-> c -> e)
4 2, 1 imeqd
a -> (d -> b <-> e -> c)
5 3, 4 aneqd
a -> ((b -> d) /\ (d -> b) <-> (c -> e) /\ (e -> c))
6 5 conv iff
a -> (b <-> d <-> (c <-> e))

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)