theorem bieqd (a b c d e: wff): $ a -> (b <-> c) $ > $ a -> (d <-> e) $ > $ a -> (b <-> d <-> (c <-> e)) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp h1 | a -> (b <-> c) |
|
2 | hyp h2 | a -> (d <-> e) |
|
3 | 1, 2 | imeqd | a -> (b -> d <-> c -> e) |
4 | 2, 1 | imeqd | a -> (d -> b <-> e -> c) |
5 | 3, 4 | aneqd | a -> ((b -> d) /\ (d -> b) <-> (c -> e) /\ (e -> c)) |
6 | 5 | conv iff | a -> (b <-> d <-> (c <-> e)) |