theorem rbid (a b c: wff):
$ b -> a $ >
$ c -> a $ >
$ a -> (b <-> c) $ >
$ b <-> c $;
| Step | Hyp | Ref | Expression |
| 1 |
|
bitr3 |
(b /\ a <-> b) -> (b /\ a <-> c) -> (b <-> c) |
| 2 |
|
bian2a |
(b -> a) -> (b /\ a <-> b) |
| 3 |
|
hyp h1 |
b -> a |
| 4 |
2, 3 |
ax_mp |
b /\ a <-> b |
| 5 |
1, 4 |
ax_mp |
(b /\ a <-> c) -> (b <-> c) |
| 6 |
|
bitr |
(b /\ a <-> c /\ a) -> (c /\ a <-> c) -> (b /\ a <-> c) |
| 7 |
|
aneq1a |
(a -> (b <-> c)) -> (b /\ a <-> c /\ a) |
| 8 |
|
hyp h |
a -> (b <-> c) |
| 9 |
7, 8 |
ax_mp |
b /\ a <-> c /\ a |
| 10 |
6, 9 |
ax_mp |
(c /\ a <-> c) -> (b /\ a <-> c) |
| 11 |
|
bian2a |
(c -> a) -> (c /\ a <-> c) |
| 12 |
|
hyp h2 |
c -> a |
| 13 |
11, 12 |
ax_mp |
c /\ a <-> c |
| 14 |
10, 13 |
ax_mp |
b /\ a <-> c |
| 15 |
5, 14 |
ax_mp |
b <-> c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp)