Theorem rbid | index | src |

theorem rbid (a b c: wff):
  $ b -> a $ >
  $ c -> a $ >
  $ a -> (b <-> c) $ >
  $ b <-> c $;
StepHypRefExpression
1 bitr3
(b /\ a <-> b) -> (b /\ a <-> c) -> (b <-> c)
2 bian2a
(b -> a) -> (b /\ a <-> b)
3 hyp h1
b -> a
4 2, 3 ax_mp
b /\ a <-> b
5 1, 4 ax_mp
(b /\ a <-> c) -> (b <-> c)
6 bitr
(b /\ a <-> c /\ a) -> (c /\ a <-> c) -> (b /\ a <-> c)
7 aneq1a
(a -> (b <-> c)) -> (b /\ a <-> c /\ a)
8 hyp h
a -> (b <-> c)
9 7, 8 ax_mp
b /\ a <-> c /\ a
10 6, 9 ax_mp
(c /\ a <-> c) -> (b /\ a <-> c)
11 bian2a
(c -> a) -> (c /\ a <-> c)
12 hyp h2
c -> a
13 11, 12 ax_mp
c /\ a <-> c
14 10, 13 ax_mp
b /\ a <-> c
15 5, 14 ax_mp
b <-> c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)