theorem rbid (a b c: wff):
  $ b -> a $ >
  $ c -> a $ >
  $ a -> (b <-> c) $ >
  $ b <-> c $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          bitr3 | 
          (b /\ a <-> b) -> (b /\ a <-> c) -> (b <-> c)  | 
        
        
          | 2 | 
           | 
          bian2a | 
          (b -> a) -> (b /\ a <-> b)  | 
        
        
          | 3 | 
           | 
          hyp h1 | 
          b -> a  | 
        
        
          | 4 | 
          2, 3 | 
          ax_mp | 
          b /\ a <-> b  | 
        
        
          | 5 | 
          1, 4 | 
          ax_mp | 
          (b /\ a <-> c) -> (b <-> c)  | 
        
        
          | 6 | 
           | 
          bitr | 
          (b /\ a <-> c /\ a) -> (c /\ a <-> c) -> (b /\ a <-> c)  | 
        
        
          | 7 | 
           | 
          aneq1a | 
          (a -> (b <-> c)) -> (b /\ a <-> c /\ a)  | 
        
        
          | 8 | 
           | 
          hyp h | 
          a -> (b <-> c)  | 
        
        
          | 9 | 
          7, 8 | 
          ax_mp | 
          b /\ a <-> c /\ a  | 
        
        
          | 10 | 
          6, 9 | 
          ax_mp | 
          (c /\ a <-> c) -> (b /\ a <-> c)  | 
        
        
          | 11 | 
           | 
          bian2a | 
          (c -> a) -> (c /\ a <-> c)  | 
        
        
          | 12 | 
           | 
          hyp h2 | 
          c -> a  | 
        
        
          | 13 | 
          11, 12 | 
          ax_mp | 
          c /\ a <-> c  | 
        
        
          | 14 | 
          10, 13 | 
          ax_mp | 
          b /\ a <-> c  | 
        
        
          | 15 | 
          5, 14 | 
          ax_mp | 
          b <-> c  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp)