theorem rbida (a b c d: wff):
$ a /\ c -> b $ >
$ a /\ d -> b $ >
$ a /\ b -> (c <-> d) $ >
$ a -> (c <-> d) $;
| Step | Hyp | Ref | Expression |
| 1 |
|
bian2a |
(c -> b) -> (c /\ b <-> c) |
| 2 |
|
hyp h1 |
a /\ c -> b |
| 3 |
1, 2 |
syla |
a -> (c /\ b <-> c) |
| 4 |
|
aneq1a |
(b -> (c <-> d)) -> (c /\ b <-> d /\ b) |
| 5 |
|
hyp h |
a /\ b -> (c <-> d) |
| 6 |
4, 5 |
syla |
a -> (c /\ b <-> d /\ b) |
| 7 |
|
bian2a |
(d -> b) -> (d /\ b <-> d) |
| 8 |
|
hyp h2 |
a /\ d -> b |
| 9 |
7, 8 |
syla |
a -> (d /\ b <-> d) |
| 10 |
6, 9 |
bitrd |
a -> (c /\ b <-> d) |
| 11 |
3, 10 |
bitr3d |
a -> (c <-> d) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp)