theorem aneq1a (a b c: wff): $ (c -> (a <-> b)) -> (a /\ c <-> b /\ c) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomb | a /\ c <-> c /\ a |
|
| 2 | ancomb | c /\ b <-> b /\ c |
|
| 3 | aneq2a | (c -> (a <-> b)) -> (c /\ a <-> c /\ b) |
|
| 4 | 2, 3 | syl6bb | (c -> (a <-> b)) -> (c /\ a <-> b /\ c) |
| 5 | 1, 4 | syl5bb | (c -> (a <-> b)) -> (a /\ c <-> b /\ c) |