Theorem aneq1a | index | src |

theorem aneq1a (a b c: wff): $ (c -> (a <-> b)) -> (a /\ c <-> b /\ c) $;
StepHypRefExpression
1 ancomb
a /\ c <-> c /\ a
2 ancomb
c /\ b <-> b /\ c
3 aneq2a
(c -> (a <-> b)) -> (c /\ a <-> c /\ b)
4 2, 3 syl6bb
(c -> (a <-> b)) -> (c /\ a <-> b /\ c)
5 1, 4 syl5bb
(c -> (a <-> b)) -> (a /\ c <-> b /\ c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)