Theorem aneq1da | index | src |

theorem aneq1da (G a b c: wff):
  $ G /\ c -> (a <-> b) $ >
  $ G -> (a /\ c <-> b /\ c) $;
StepHypRefExpression
1 aneq1a
(c -> (a <-> b)) -> (a /\ c <-> b /\ c)
2 hyp h
G /\ c -> (a <-> b)
3 2 exp
G -> c -> (a <-> b)
4 1, 3 syl
G -> (a /\ c <-> b /\ c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)