theorem minaddsub (a b: nat): $ min a b + (a - b) = a $;
Step | Hyp | Ref | Expression |
1 |
|
eqtr |
min a b + (a - b) = a - b + min a b -> a - b + min a b = a -> min a b + (a - b) = a |
2 |
|
addcom |
min a b + (a - b) = a - b + min a b |
3 |
1, 2 |
ax_mp |
a - b + min a b = a -> min a b + (a - b) = a |
4 |
|
subaddmin |
a - b + min a b = a |
5 |
3, 4 |
ax_mp |
min a b + (a - b) = a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)