theorem subaddmin (a b: nat): $ a - b + min a b = a $;
Step | Hyp | Ref | Expression |
1 |
|
eor |
(b <= a -> a - b + min a b = a) -> (a <= b -> a - b + min a b = a) -> b <= a \/ a <= b -> a - b + min a b = a |
2 |
|
eqmin2 |
b <= a -> min a b = b |
3 |
2 |
addeq2d |
b <= a -> a - b + min a b = a - b + b |
4 |
|
npcan |
b <= a -> a - b + b = a |
5 |
3, 4 |
eqtrd |
b <= a -> a - b + min a b = a |
6 |
1, 5 |
ax_mp |
(a <= b -> a - b + min a b = a) -> b <= a \/ a <= b -> a - b + min a b = a |
7 |
|
lesubeq0 |
a <= b <-> a - b = 0 |
8 |
|
addeq1 |
a - b = 0 -> a - b + min a b = 0 + min a b |
9 |
7, 8 |
sylbi |
a <= b -> a - b + min a b = 0 + min a b |
10 |
|
add01 |
0 + min a b = min a b |
11 |
|
eqmin1 |
a <= b -> min a b = a |
12 |
10, 11 |
syl5eq |
a <= b -> 0 + min a b = a |
13 |
9, 12 |
eqtrd |
a <= b -> a - b + min a b = a |
14 |
6, 13 |
ax_mp |
b <= a \/ a <= b -> a - b + min a b = a |
15 |
|
leorle |
b <= a \/ a <= b |
16 |
14, 15 |
ax_mp |
a - b + min a b = a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)