theorem subaddmin (a b: nat): $ a - b + min a b = a $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          eor | 
          (b <= a -> a - b + min a b = a) -> (a <= b -> a - b + min a b = a) -> b <= a \/ a <= b -> a - b + min a b = a  | 
        
        
          | 2 | 
           | 
          eqmin2 | 
          b <= a -> min a b = b  | 
        
        
          | 3 | 
          2 | 
          addeq2d | 
          b <= a -> a - b + min a b = a - b + b  | 
        
        
          | 4 | 
           | 
          npcan | 
          b <= a -> a - b + b = a  | 
        
        
          | 5 | 
          3, 4 | 
          eqtrd | 
          b <= a -> a - b + min a b = a  | 
        
        
          | 6 | 
          1, 5 | 
          ax_mp | 
          (a <= b -> a - b + min a b = a) -> b <= a \/ a <= b -> a - b + min a b = a  | 
        
        
          | 7 | 
           | 
          lesubeq0 | 
          a <= b <-> a - b = 0  | 
        
        
          | 8 | 
           | 
          addeq1 | 
          a - b = 0 -> a - b + min a b = 0 + min a b  | 
        
        
          | 9 | 
          7, 8 | 
          sylbi | 
          a <= b -> a - b + min a b = 0 + min a b  | 
        
        
          | 10 | 
           | 
          add01 | 
          0 + min a b = min a b  | 
        
        
          | 11 | 
           | 
          eqmin1 | 
          a <= b -> min a b = a  | 
        
        
          | 12 | 
          10, 11 | 
          syl5eq | 
          a <= b -> 0 + min a b = a  | 
        
        
          | 13 | 
          9, 12 | 
          eqtrd | 
          a <= b -> a - b + min a b = a  | 
        
        
          | 14 | 
          6, 13 | 
          ax_mp | 
          b <= a \/ a <= b -> a - b + min a b = a  | 
        
        
          | 15 | 
           | 
          leorle | 
          b <= a \/ a <= b  | 
        
        
          | 16 | 
          14, 15 | 
          ax_mp | 
          a - b + min a b = a  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      add0,
      addS)