Theorem muldiv2 | index | src |

theorem muldiv2 (a b: nat): $ b != 0 -> b * a // b = a $;
StepHypRefExpression
1 bi2
(0 < b <-> b != 0) -> b != 0 -> 0 < b
2 lt01
0 < b <-> b != 0
3 1, 2 ax_mp
b != 0 -> 0 < b
4 add0
b * a + 0 = b * a
5 4 a1i
b != 0 -> b * a + 0 = b * a
6 3, 5 eqdivmod
b != 0 -> b * a // b = a /\ b * a % b = 0
7 6 anld
b != 0 -> b * a // b = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)