theorem eqdivmod (G: wff) (Q R a b: nat):
$ G -> R < b $ >
$ G -> b * Q + R = a $ >
$ G -> a // b = Q /\ a % b = R $;
Step | Hyp | Ref | Expression |
1 |
|
hyp h1 |
G -> R < b |
2 |
|
hyp h2 |
G -> b * Q + R = a |
3 |
1, 2 |
divlem2 |
G -> (E. r (r < b /\ b * q + r = a) <-> q = Q) |
4 |
3 |
eqtheabd |
G -> the {q | E. r (r < b /\ b * q + r = a)} = Q |
5 |
4 |
conv div |
G -> a // b = Q |
6 |
|
eqsub2 |
b * (a // b) + R = a -> a - b * (a // b) = R |
7 |
6 |
conv mod |
b * (a // b) + R = a -> a % b = R |
8 |
5 |
muleq2d |
G -> b * (a // b) = b * Q |
9 |
8 |
addeq1d |
G -> b * (a // b) + R = b * Q + R |
10 |
9, 2 |
eqtrd |
G -> b * (a // b) + R = a |
11 |
7, 10 |
syl |
G -> a % b = R |
12 |
5, 11 |
iand |
G -> a // b = Q /\ a % b = R |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)