Theorem eqsub2 | index | src |

theorem eqsub2 (a b c: nat): $ a + b = c -> c - a = b $;
StepHypRefExpression
1 addeq2
y = x -> a + y = a + x
2 1 eqeq1d
y = x -> (a + y = c <-> a + x = c)
3 2 elabe
x e. {y | a + y = c} <-> a + x = c
4 addcan2
a + x = a + b <-> x = b
5 eqeq2
a + b = c -> (a + x = a + b <-> a + x = c)
6 5 bicomd
a + b = c -> (a + x = c <-> a + x = a + b)
7 4, 6 syl6bb
a + b = c -> (a + x = c <-> x = b)
8 3, 7 syl5bb
a + b = c -> (x e. {y | a + y = c} <-> x = b)
9 8 eqthed
a + b = c -> the {y | a + y = c} = b
10 9 conv sub
a + b = c -> c - a = b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano2, peano5, addeq, add0, addS)