Theorem eqthed | index | src |

theorem eqthed (A: set) (G: wff) (a: nat) {x: nat}:
  $ G -> (x e. A <-> x = a) $ >
  $ G -> the A = a $;
StepHypRefExpression
1 theid
A == {z | z = a} -> the A = a
2 eqeq1
z = x -> (z = a <-> x = a)
3 2 elabe
x e. {z | z = a} <-> x = a
4 hyp h
G -> (x e. A <-> x = a)
5 3, 4 syl6bbr
G -> (x e. A <-> x e. {z | z = a})
6 5 eqrd
G -> A == {z | z = a}
7 1, 6 syl
G -> the A = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid)