theorem syl6bbr (a b c d: wff):
$ d <-> c $ >
$ a -> (b <-> c) $ >
$ a -> (b <-> d) $;
Step | Hyp | Ref | Expression |
1 |
|
bicom |
(d <-> c) -> (c <-> d) |
2 |
|
hyp h1 |
d <-> c |
3 |
1, 2 |
ax_mp |
c <-> d |
4 |
|
hyp h2 |
a -> (b <-> c) |
5 |
3, 4 |
syl6bb |
a -> (b <-> d) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp)