Theorem eqsub1 | index | src |

theorem eqsub1 (a b c: nat): $ a + b = c -> c - b = a $;
StepHypRefExpression
1 eqeq1
a + b = b + a -> (a + b = c <-> b + a = c)
2 addcom
a + b = b + a
3 1, 2 ax_mp
a + b = c <-> b + a = c
4 eqsub2
b + a = c -> c - b = a
5 3, 4 sylbi
a + b = c -> c - b = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano2, peano5, addeq, add0, addS)