theorem mulcom (a b: nat): $ a * b = b * a $;
Step | Hyp | Ref | Expression |
1 |
|
muleq2 |
x = b -> a * x = a * b |
2 |
|
muleq1 |
x = b -> x * a = b * a |
3 |
1, 2 |
eqeqd |
x = b -> (a * x = x * a <-> a * b = b * a) |
4 |
|
muleq2 |
x = 0 -> a * x = a * 0 |
5 |
|
muleq1 |
x = 0 -> x * a = 0 * a |
6 |
4, 5 |
eqeqd |
x = 0 -> (a * x = x * a <-> a * 0 = 0 * a) |
7 |
|
muleq2 |
x = y -> a * x = a * y |
8 |
|
muleq1 |
x = y -> x * a = y * a |
9 |
7, 8 |
eqeqd |
x = y -> (a * x = x * a <-> a * y = y * a) |
10 |
|
muleq2 |
x = suc y -> a * x = a * suc y |
11 |
|
muleq1 |
x = suc y -> x * a = suc y * a |
12 |
10, 11 |
eqeqd |
x = suc y -> (a * x = x * a <-> a * suc y = suc y * a) |
13 |
|
eqtr4 |
a * 0 = 0 -> 0 * a = 0 -> a * 0 = 0 * a |
14 |
|
mul0 |
a * 0 = 0 |
15 |
13, 14 |
ax_mp |
0 * a = 0 -> a * 0 = 0 * a |
16 |
|
mul01 |
0 * a = 0 |
17 |
15, 16 |
ax_mp |
a * 0 = 0 * a |
18 |
|
mulS |
a * suc y = a * y + a |
19 |
|
mulS1 |
suc y * a = y * a + a |
20 |
|
addeq1 |
a * y = y * a -> a * y + a = y * a + a |
21 |
18, 19, 20 |
eqtr4g |
a * y = y * a -> a * suc y = suc y * a |
22 |
3, 6, 9, 12, 17, 21 |
ind |
a * b = b * a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)