Theorem mul12 | index | src |

theorem mul12 (a: nat): $ a * 1 = a $;
StepHypRefExpression
1 eqtr
a * 1 = a * 0 + a -> a * 0 + a = a -> a * 1 = a
2 mulS
a * suc 0 = a * 0 + a
3 2 conv d1
a * 1 = a * 0 + a
4 1, 3 ax_mp
a * 0 + a = a -> a * 1 = a
5 eqtr
a * 0 + a = 0 + a -> 0 + a = a -> a * 0 + a = a
6 addeq1
a * 0 = 0 -> a * 0 + a = 0 + a
7 mul0
a * 0 = 0
8 6, 7 ax_mp
a * 0 + a = 0 + a
9 5, 8 ax_mp
0 + a = a -> a * 0 + a = a
10 add01
0 + a = a
11 9, 10 ax_mp
a * 0 + a = a
12 4, 11 ax_mp
a * 1 = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, add0, addS, mul0, mulS)