Theorem mul01 | index | src |

theorem mul01 (a: nat): $ 0 * a = 0 $;
StepHypRefExpression
1 muleq2
x = a -> 0 * x = 0 * a
2 1 eqeq1d
x = a -> (0 * x = 0 <-> 0 * a = 0)
3 muleq2
x = 0 -> 0 * x = 0 * 0
4 3 eqeq1d
x = 0 -> (0 * x = 0 <-> 0 * 0 = 0)
5 muleq2
x = y -> 0 * x = 0 * y
6 5 eqeq1d
x = y -> (0 * x = 0 <-> 0 * y = 0)
7 muleq2
x = suc y -> 0 * x = 0 * suc y
8 7 eqeq1d
x = suc y -> (0 * x = 0 <-> 0 * suc y = 0)
9 mul0
0 * 0 = 0
10 eqtr
0 * suc y = 0 * y + 0 -> 0 * y + 0 = 0 * y -> 0 * suc y = 0 * y
11 mulS
0 * suc y = 0 * y + 0
12 10, 11 ax_mp
0 * y + 0 = 0 * y -> 0 * suc y = 0 * y
13 add0
0 * y + 0 = 0 * y
14 12, 13 ax_mp
0 * suc y = 0 * y
15 id
0 * y = 0 -> 0 * y = 0
16 14, 15 syl5eq
0 * y = 0 -> 0 * suc y = 0
17 2, 4, 6, 8, 9, 16 ind
0 * a = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, muleq, add0, mul0, mulS)