Theorem mod0 | index | src |

theorem mod0 (a: nat): $ a % 0 = a $;
StepHypRefExpression
1 eqtr
a % 0 = a - 0 -> a - 0 = a -> a % 0 = a
2 subeq2
0 * (a // 0) = 0 -> a - 0 * (a // 0) = a - 0
3 2 conv mod
0 * (a // 0) = 0 -> a % 0 = a - 0
4 mul01
0 * (a // 0) = 0
5 3, 4 ax_mp
a % 0 = a - 0
6 1, 5 ax_mp
a - 0 = a -> a % 0 = a
7 sub02
a - 0 = a
8 6, 7 ax_mp
a % 0 = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)