Theorem div0 | index | src |

pub theorem div0 (a: nat): $ a // 0 = 0 $;
StepHypRefExpression
1 absurd
~r < 0 -> r < 0 -> q = 0
2 lt02
~r < 0
3 1, 2 ax_mp
r < 0 -> q = 0
4 3 anwl
r < 0 /\ 0 * q + r = a -> q = 0
5 4 eex
E. r (r < 0 /\ 0 * q + r = a) -> q = 0
6 5 a1i
T. -> E. r (r < 0 /\ 0 * q + r = a) -> q = 0
7 6 eqthe0abd
T. -> the {q | E. r (r < 0 /\ 0 * q + r = a)} = 0
8 7 conv div
T. -> a // 0 = 0
9 8 trud
a // 0 = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, add0, addS)