pub theorem fstsnd (a: nat): $ fst a, snd a = a $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | fstpr | fst (x, y) = x | 
        
          | 2 |  | fsteq | a = x, y -> fst a = fst (x, y) | 
        
          | 3 | 1, 2 | syl6eq | a = x, y -> fst a = x | 
        
          | 4 |  | sndpr | snd (x, y) = y | 
        
          | 5 |  | sndeq | a = x, y -> snd a = snd (x, y) | 
        
          | 6 | 4, 5 | syl6eq | a = x, y -> snd a = y | 
        
          | 7 | 3, 6 | preqd | a = x, y -> fst a, snd a = x, y | 
        
          | 8 |  | id | a = x, y -> a = x, y | 
        
          | 9 | 7, 8 | eqtr4d | a = x, y -> fst a, snd a = a | 
        
          | 10 | 9 | eex | E. y a = x, y -> fst a, snd a = a | 
        
          | 11 | 10 | eex | E. x E. y a = x, y -> fst a, snd a = a | 
        
          | 12 |  | expr | E. x E. y a = x, y | 
        
          | 13 | 11, 12 | ax_mp | fst a, snd a = a | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)