Theorem fstsnd | index | src |

pub theorem fstsnd (a: nat): $ fst a, snd a = a $;
StepHypRefExpression
1 fstpr
fst (x, y) = x
2 fsteq
a = x, y -> fst a = fst (x, y)
3 1, 2 syl6eq
a = x, y -> fst a = x
4 sndpr
snd (x, y) = y
5 sndeq
a = x, y -> snd a = snd (x, y)
6 4, 5 syl6eq
a = x, y -> snd a = y
7 3, 6 preqd
a = x, y -> fst a, snd a = x, y
8 id
a = x, y -> a = x, y
9 7, 8 eqtr4d
a = x, y -> fst a, snd a = a
10 9 eex
E. y a = x, y -> fst a, snd a = a
11 10 eex
E. x E. y a = x, y -> fst a, snd a = a
12 expr
E. x E. y a = x, y
13 11, 12 ax_mp
fst a, snd a = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)