theorem preqd (_G: wff) (_a1 _a2 _b1 _b2: nat):
$ _G -> _a1 = _a2 $ >
$ _G -> _b1 = _b2 $ >
$ _G -> _a1, _b1 = _a2, _b2 $;
Step | Hyp | Ref | Expression |
1 |
|
hyp _ah |
_G -> _a1 = _a2 |
2 |
|
hyp _bh |
_G -> _b1 = _b2 |
3 |
1, 2 |
addeqd |
_G -> _a1 + _b1 = _a2 + _b2 |
4 |
3 |
suceqd |
_G -> suc (_a1 + _b1) = suc (_a2 + _b2) |
5 |
3, 4 |
muleqd |
_G -> (_a1 + _b1) * suc (_a1 + _b1) = (_a2 + _b2) * suc (_a2 + _b2) |
6 |
|
eqidd |
_G -> 2 = 2 |
7 |
5, 6 |
diveqd |
_G -> (_a1 + _b1) * suc (_a1 + _b1) // 2 = (_a2 + _b2) * suc (_a2 + _b2) // 2 |
8 |
7, 2 |
addeqd |
_G -> (_a1 + _b1) * suc (_a1 + _b1) // 2 + _b1 = (_a2 + _b2) * suc (_a2 + _b2) // 2 + _b2 |
9 |
8 |
conv pr |
_G -> _a1, _b1 = _a2, _b2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)