Theorem preqd | index | src |

theorem preqd (_G: wff) (_a1 _a2 _b1 _b2: nat):
  $ _G -> _a1 = _a2 $ >
  $ _G -> _b1 = _b2 $ >
  $ _G -> _a1, _b1 = _a2, _b2 $;
StepHypRefExpression
1 hyp _ah
_G -> _a1 = _a2
2 hyp _bh
_G -> _b1 = _b2
3 1, 2 addeqd
_G -> _a1 + _b1 = _a2 + _b2
4 3 suceqd
_G -> suc (_a1 + _b1) = suc (_a2 + _b2)
5 3, 4 muleqd
_G -> (_a1 + _b1) * suc (_a1 + _b1) = (_a2 + _b2) * suc (_a2 + _b2)
6 eqidd
_G -> 2 = 2
7 5, 6 diveqd
_G -> (_a1 + _b1) * suc (_a1 + _b1) // 2 = (_a2 + _b2) * suc (_a2 + _b2) // 2
8 7, 2 addeqd
_G -> (_a1 + _b1) * suc (_a1 + _b1) // 2 + _b1 = (_a2 + _b2) * suc (_a2 + _b2) // 2 + _b2
9 8 conv pr
_G -> _a1, _b1 = _a2, _b2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)