Theorem sndpr | index | src |

pub theorem sndpr (a b: nat): $ snd (a, b) = b $;
StepHypRefExpression
1 prth
a, b = x, y <-> a = x /\ b = y
2 anr
a = x /\ b = y -> b = y
3 2 eqcomd
a = x /\ b = y -> y = b
4 1, 3 sylbi
a, b = x, y -> y = b
5 4 eex
E. x a, b = x, y -> y = b
6 preq2
y = b -> a, y = a, b
7 6 eqcomd
y = b -> a, b = a, y
8 preq1
x = a -> x, y = a, y
9 8 eqeq2d
x = a -> (a, b = x, y <-> a, b = a, y)
10 9 iexe
a, b = a, y -> E. x a, b = x, y
11 7, 10 rsyl
y = b -> E. x a, b = x, y
12 5, 11 ibii
E. x a, b = x, y <-> y = b
13 12 a1i
T. -> (E. x a, b = x, y <-> y = b)
14 13 eqtheabd
T. -> the {y | E. x a, b = x, y} = b
15 14 conv snd
T. -> snd (a, b) = b
16 15 trud
snd (a, b) = b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)