pub theorem sndpr (a b: nat): $ snd (a, b) = b $;
Step | Hyp | Ref | Expression |
1 |
|
prth |
a, b = x, y <-> a = x /\ b = y |
2 |
|
anr |
a = x /\ b = y -> b = y |
3 |
2 |
eqcomd |
a = x /\ b = y -> y = b |
4 |
1, 3 |
sylbi |
a, b = x, y -> y = b |
5 |
4 |
eex |
E. x a, b = x, y -> y = b |
6 |
|
preq2 |
y = b -> a, y = a, b |
7 |
6 |
eqcomd |
y = b -> a, b = a, y |
8 |
|
preq1 |
x = a -> x, y = a, y |
9 |
8 |
eqeq2d |
x = a -> (a, b = x, y <-> a, b = a, y) |
10 |
9 |
iexe |
a, b = a, y -> E. x a, b = x, y |
11 |
7, 10 |
rsyl |
y = b -> E. x a, b = x, y |
12 |
5, 11 |
ibii |
E. x a, b = x, y <-> y = b |
13 |
12 |
a1i |
T. -> (E. x a, b = x, y <-> y = b) |
14 |
13 |
eqtheabd |
T. -> the {y | E. x a, b = x, y} = b |
15 |
14 |
conv snd |
T. -> snd (a, b) = b |
16 |
15 |
trud |
snd (a, b) = b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)