Theorem prth | index | src |

theorem prth (a b c d: nat): $ a, c = b, d <-> a = b /\ c = d $;
StepHypRefExpression
1 addcan1
a + c = b + c <-> a = b
2 prlem2
a, c <= b, d -> a + c <= b + d
3 eqle
a, c = b, d -> a, c <= b, d
4 2, 3 syl
a, c = b, d -> a + c <= b + d
5 prlem2
b, d <= a, c -> b + d <= a + c
6 eqler
a, c = b, d -> b, d <= a, c
7 5, 6 syl
a, c = b, d -> b + d <= a + c
8 4, 7 leasymd
a, c = b, d -> a + c = b + d
9 addcan2
b + c = b + d <-> c = d
10 addcan2
(b + d) * suc (b + d) // 2 + c = (b + d) * suc (b + d) // 2 + d <-> c = d
11 id
a + c = b + d -> a + c = b + d
12 suceq
a + c = b + d -> suc (a + c) = suc (b + d)
13 11, 12 muleqd
a + c = b + d -> (a + c) * suc (a + c) = (b + d) * suc (b + d)
14 13 diveq1d
a + c = b + d -> (a + c) * suc (a + c) // 2 = (b + d) * suc (b + d) // 2
15 14 addeq1d
a + c = b + d -> (a + c) * suc (a + c) // 2 + c = (b + d) * suc (b + d) // 2 + c
16 15 eqeq1d
a + c = b + d -> ((a + c) * suc (a + c) // 2 + c = (b + d) * suc (b + d) // 2 + d <-> (b + d) * suc (b + d) // 2 + c = (b + d) * suc (b + d) // 2 + d)
17 8, 16 rsyl
a, c = b, d -> ((a + c) * suc (a + c) // 2 + c = (b + d) * suc (b + d) // 2 + d <-> (b + d) * suc (b + d) // 2 + c = (b + d) * suc (b + d) // 2 + d)
18 id
a, c = b, d -> a, c = b, d
19 18 conv pr
a, c = b, d -> (a + c) * suc (a + c) // 2 + c = (b + d) * suc (b + d) // 2 + d
20 17, 19 mpbid
a, c = b, d -> (b + d) * suc (b + d) // 2 + c = (b + d) * suc (b + d) // 2 + d
21 10, 20 sylib
a, c = b, d -> c = d
22 9, 21 sylibr
a, c = b, d -> b + c = b + d
23 8, 22 eqtr4d
a, c = b, d -> a + c = b + c
24 1, 23 sylib
a, c = b, d -> a = b
25 24, 21 iand
a, c = b, d -> a = b /\ c = d
26 anl
a = b /\ c = d -> a = b
27 anr
a = b /\ c = d -> c = d
28 26, 27 preqd
a = b /\ c = d -> a, c = b, d
29 25, 28 ibii
a, c = b, d <-> a = b /\ c = d

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)