Theorem prltsuc | index | src |

theorem prltsuc (a b: nat): $ a, b < suc (a + b), 0 $;
StepHypRefExpression
1 ltnle
a, b < suc (a + b), 0 <-> ~suc (a + b), 0 <= a, b
2 prlem2
suc (a + b), 0 <= a, b -> suc (a + b) + 0 <= a + b
3 ltnle
a + b < suc (a + b) + 0 <-> ~suc (a + b) + 0 <= a + b
4 lteq2
suc (a + b) + 0 = suc (a + b) -> (a + b < suc (a + b) + 0 <-> a + b < suc (a + b))
5 add0
suc (a + b) + 0 = suc (a + b)
6 4, 5 ax_mp
a + b < suc (a + b) + 0 <-> a + b < suc (a + b)
7 ltsucid
a + b < suc (a + b)
8 6, 7 mpbir
a + b < suc (a + b) + 0
9 3, 8 mpbi
~suc (a + b) + 0 <= a + b
10 2, 9 mt
~suc (a + b), 0 <= a, b
11 1, 10 mpbir
a, b < suc (a + b), 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)