theorem addlepr (a b: nat): $ a + b <= a, b $;
Step | Hyp | Ref | Expression |
1 |
|
letr |
a + b <= (a + b) * suc (a + b) // 2 -> (a + b) * suc (a + b) // 2 <= a, b -> a + b <= a, b |
2 |
|
le01 |
0 <= (a + b) * suc (a + b) // 2 |
3 |
|
leeq1 |
a + b = 0 -> (a + b <= (a + b) * suc (a + b) // 2 <-> 0 <= (a + b) * suc (a + b) // 2) |
4 |
2, 3 |
mpbiri |
a + b = 0 -> a + b <= (a + b) * suc (a + b) // 2 |
5 |
|
ledivmul2 |
2 != 0 -> (a + b <= (a + b) * suc (a + b) // 2 <-> (a + b) * 2 <= (a + b) * suc (a + b)) |
6 |
|
d2ne0 |
2 != 0 |
7 |
5, 6 |
ax_mp |
a + b <= (a + b) * suc (a + b) // 2 <-> (a + b) * 2 <= (a + b) * suc (a + b) |
8 |
|
bitr3 |
(1 <= a + b <-> ~a + b = 0) -> (1 <= a + b <-> suc 1 <= suc (a + b)) -> (~a + b = 0 <-> suc 1 <= suc (a + b)) |
9 |
|
le11 |
1 <= a + b <-> a + b != 0 |
10 |
9 |
conv ne |
1 <= a + b <-> ~a + b = 0 |
11 |
8, 10 |
ax_mp |
(1 <= a + b <-> suc 1 <= suc (a + b)) -> (~a + b = 0 <-> suc 1 <= suc (a + b)) |
12 |
|
lesuc |
1 <= a + b <-> suc 1 <= suc (a + b) |
13 |
11, 12 |
ax_mp |
~a + b = 0 <-> suc 1 <= suc (a + b) |
14 |
|
lemul2a |
suc 1 <= suc (a + b) -> (a + b) * suc 1 <= (a + b) * suc (a + b) |
15 |
14 |
conv d2 |
suc 1 <= suc (a + b) -> (a + b) * 2 <= (a + b) * suc (a + b) |
16 |
13, 15 |
sylbi |
~a + b = 0 -> (a + b) * 2 <= (a + b) * suc (a + b) |
17 |
7, 16 |
sylibr |
~a + b = 0 -> a + b <= (a + b) * suc (a + b) // 2 |
18 |
4, 17 |
cases |
a + b <= (a + b) * suc (a + b) // 2 |
19 |
1, 18 |
ax_mp |
(a + b) * suc (a + b) // 2 <= a, b -> a + b <= a, b |
20 |
|
leaddid1 |
(a + b) * suc (a + b) // 2 <= (a + b) * suc (a + b) // 2 + b |
21 |
20 |
conv pr |
(a + b) * suc (a + b) // 2 <= a, b |
22 |
19, 21 |
ax_mp |
a + b <= a, b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)