Theorem lemul2a | index | src |

theorem lemul2a (a b c: nat): $ b <= c -> a * b <= a * c $;
StepHypRefExpression
1 leeq
b * a = a * b -> c * a = a * c -> (b * a <= c * a <-> a * b <= a * c)
2 mulcom
b * a = a * b
3 1, 2 ax_mp
c * a = a * c -> (b * a <= c * a <-> a * b <= a * c)
4 mulcom
c * a = a * c
5 3, 4 ax_mp
b * a <= c * a <-> a * b <= a * c
6 lemul1a
b <= c -> b * a <= c * a
7 5, 6 sylib
b <= c -> a * b <= a * c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)