Theorem lemuld | index | src |

theorem lemuld (G: wff) (a b c d: nat):
  $ G -> a <= b $ >
  $ G -> c <= d $ >
  $ G -> a * c <= b * d $;
StepHypRefExpression
1 lemul1a
a <= b -> a * c <= b * c
2 hyp h1
G -> a <= b
3 1, 2 syl
G -> a * c <= b * c
4 lemul2a
c <= d -> b * c <= b * d
5 hyp h2
G -> c <= d
6 4, 5 syl
G -> b * c <= b * d
7 3, 6 letrd
G -> a * c <= b * d

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)