theorem le11 (a: nat): $ 1 <= a <-> a != 0 $;
Step | Hyp | Ref | Expression |
1 |
|
bitr4 |
(1 <= a <-> E. x a = suc x) -> (a != 0 <-> E. x a = suc x) -> (1 <= a <-> a != 0) |
2 |
|
bitr |
(1 + x = a <-> a = 1 + x) -> (a = 1 + x <-> a = suc x) -> (1 + x = a <-> a = suc x) |
3 |
|
eqcomb |
1 + x = a <-> a = 1 + x |
4 |
2, 3 |
ax_mp |
(a = 1 + x <-> a = suc x) -> (1 + x = a <-> a = suc x) |
5 |
|
eqeq2 |
1 + x = suc x -> (a = 1 + x <-> a = suc x) |
6 |
|
add11 |
1 + x = suc x |
7 |
5, 6 |
ax_mp |
a = 1 + x <-> a = suc x |
8 |
4, 7 |
ax_mp |
1 + x = a <-> a = suc x |
9 |
8 |
exeqi |
E. x 1 + x = a <-> E. x a = suc x |
10 |
9 |
conv le |
1 <= a <-> E. x a = suc x |
11 |
1, 10 |
ax_mp |
(a != 0 <-> E. x a = suc x) -> (1 <= a <-> a != 0) |
12 |
|
exsuc |
a != 0 <-> E. x a = suc x |
13 |
11, 12 |
ax_mp |
1 <= a <-> a != 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)