theorem addeq0 (a b: nat): $ a + b = 0 <-> a = 0 /\ b = 0 $;
Step | Hyp | Ref | Expression |
1 |
|
le02 |
a <= 0 <-> a = 0 |
2 |
|
leaddid1 |
a <= a + b |
3 |
|
leeq2 |
a + b = 0 -> (a <= a + b <-> a <= 0) |
4 |
2, 3 |
mpbii |
a + b = 0 -> a <= 0 |
5 |
1, 4 |
sylib |
a + b = 0 -> a = 0 |
6 |
|
le02 |
b <= 0 <-> b = 0 |
7 |
|
leaddid2 |
b <= a + b |
8 |
|
leeq2 |
a + b = 0 -> (b <= a + b <-> b <= 0) |
9 |
7, 8 |
mpbii |
a + b = 0 -> b <= 0 |
10 |
6, 9 |
sylib |
a + b = 0 -> b = 0 |
11 |
5, 10 |
iand |
a + b = 0 -> a = 0 /\ b = 0 |
12 |
|
add0 |
0 + 0 = 0 |
13 |
|
addeq |
a = 0 -> b = 0 -> a + b = 0 + 0 |
14 |
13 |
imp |
a = 0 /\ b = 0 -> a + b = 0 + 0 |
15 |
12, 14 |
syl6eq |
a = 0 /\ b = 0 -> a + b = 0 |
16 |
11, 15 |
ibii |
a + b = 0 <-> a = 0 /\ b = 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)