Theorem addeq0 | index | src |

theorem addeq0 (a b: nat): $ a + b = 0 <-> a = 0 /\ b = 0 $;
StepHypRefExpression
1 le02
a <= 0 <-> a = 0
2 leaddid1
a <= a + b
3 leeq2
a + b = 0 -> (a <= a + b <-> a <= 0)
4 2, 3 mpbii
a + b = 0 -> a <= 0
5 1, 4 sylib
a + b = 0 -> a = 0
6 le02
b <= 0 <-> b = 0
7 leaddid2
b <= a + b
8 leeq2
a + b = 0 -> (b <= a + b <-> b <= 0)
9 7, 8 mpbii
a + b = 0 -> b <= 0
10 6, 9 sylib
a + b = 0 -> b = 0
11 5, 10 iand
a + b = 0 -> a = 0 /\ b = 0
12 add0
0 + 0 = 0
13 addeq
a = 0 -> b = 0 -> a + b = 0 + 0
14 13 imp
a = 0 /\ b = 0 -> a + b = 0 + 0
15 12, 14 syl6eq
a = 0 /\ b = 0 -> a + b = 0
16 11, 15 ibii
a + b = 0 <-> a = 0 /\ b = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano1, peano2, peano5, addeq, add0, addS)