Theorem sub1can | index | src |

theorem sub1can (a: nat): $ a != 0 -> suc (a - 1) = a $;
StepHypRefExpression
1 le11
1 <= a <-> a != 0
2 add12
a - 1 + 1 = suc (a - 1)
3 npcan
1 <= a -> a - 1 + 1 = a
4 2, 3 syl5eqr
1 <= a -> suc (a - 1) = a
5 1, 4 sylbir
a != 0 -> suc (a - 1) = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, add0, addS)