theorem sub1can (a: nat): $ a != 0 -> suc (a - 1) = a $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | le11 | 1 <= a <-> a != 0 |
|
2 | add12 | a - 1 + 1 = suc (a - 1) |
|
3 | npcan | 1 <= a -> a - 1 + 1 = a |
|
4 | 2, 3 | syl5eqr | 1 <= a -> suc (a - 1) = a |
5 | 1, 4 | sylbir | a != 0 -> suc (a - 1) = a |