Step | Hyp | Ref | Expression |
1 |
|
fstpr |
fst (m, v) = m |
2 |
1 |
a1i |
y = n -> fst (m, v) = m |
3 |
2 |
lteq2d |
y = n -> (0 < fst (m, v) <-> 0 < m) |
4 |
|
sndpr |
snd (m, v) = v |
5 |
4 |
a1i |
y = n -> snd (m, v) = v |
6 |
5 |
lteq2d |
y = n -> (0 < snd (m, v) <-> 0 < v) |
7 |
3, 6 |
aneqd |
y = n -> (0 < fst (m, v) /\ 0 < snd (m, v) <-> 0 < m /\ 0 < v) |
8 |
|
lteq2 |
x1 = x -> (0 < x1 <-> 0 < x) |
9 |
8 |
anwr |
y = n /\ x1 = x -> (0 < x1 <-> 0 < x) |
10 |
|
anr |
y = n /\ x1 = x -> x1 = x |
11 |
|
anl |
y = n /\ x1 = x -> y = n |
12 |
10, 11 |
leeqd |
y = n /\ x1 = x -> (x1 <= y <-> x <= n) |
13 |
9, 12 |
aneqd |
y = n /\ x1 = x -> (0 < x1 /\ x1 <= y <-> 0 < x /\ x <= n) |
14 |
1 |
a1i |
y = n /\ x1 = x -> fst (m, v) = m |
15 |
10, 14 |
dvdeqd |
y = n /\ x1 = x -> (x1 || fst (m, v) <-> x || m) |
16 |
13, 15 |
imeqd |
y = n /\ x1 = x -> (0 < x1 /\ x1 <= y -> x1 || fst (m, v) <-> 0 < x /\ x <= n -> x || m) |
17 |
16 |
cbvald |
y = n -> (A. x1 (0 < x1 /\ x1 <= y -> x1 || fst (m, v)) <-> A. x (0 < x /\ x <= n -> x || m)) |
18 |
7, 17 |
aneqd |
y = n -> (0 < fst (m, v) /\ 0 < snd (m, v) /\ A. x1 (0 < x1 /\ x1 <= y -> x1 || fst (m, v)) <-> 0 < m /\ 0 < v /\ A. x (0 < x /\ x <= n -> x || m)) |
19 |
|
suceq |
y = n -> suc y = suc n |
20 |
2, 19 |
muleqd |
y = n -> fst (m, v) * suc y = m * suc n |
21 |
20 |
suceqd |
y = n -> suc (fst (m, v) * suc y) = suc (m * suc n) |
22 |
21, 5 |
dvdeqd |
y = n -> (suc (fst (m, v) * suc y) || snd (m, v) <-> suc (m * suc n) || v) |
23 |
18, 22 |
aneqd |
y = n ->
(0 < fst (m, v) /\ 0 < snd (m, v) /\ A. x1 (0 < x1 /\ x1 <= y -> x1 || fst (m, v)) /\ suc (fst (m, v) * suc y) || snd (m, v) <->
0 < m /\ 0 < v /\ A. x (0 < x /\ x <= n -> x || m) /\ suc (m * suc n) || v) |
24 |
23 |
elabe |
n e. {y | 0 < fst (m, v) /\ 0 < snd (m, v) /\ A. x1 (0 < x1 /\ x1 <= y -> x1 || fst (m, v)) /\ suc (fst (m, v) * suc y) || snd (m, v)} <->
0 < m /\ 0 < v /\ A. x (0 < x /\ x <= n -> x || m) /\ suc (m * suc n) || v |
25 |
24 |
conv pset |
n e. pset (m, v) <-> 0 < m /\ 0 < v /\ A. x (0 < x /\ x <= n -> x || m) /\ suc (m * suc n) || v |