theorem elpset1 (m n: nat): $ ~n e. pset (m, 1) $;
Step | Hyp | Ref | Expression |
1 |
|
inot |
(n e. pset (m, 1) -> ~n e. pset (m, 1)) -> ~n e. pset (m, 1) |
2 |
|
elpset |
n e. pset (m, 1) <-> 0 < m /\ 0 < 1 /\ A. x (0 < x /\ x <= n -> x || m) /\ suc (m * suc n) || 1 |
3 |
|
absurd |
~m * suc n < suc 0 -> m * suc n < suc 0 -> ~n e. pset (m, 1) |
4 |
|
lenlt |
suc 0 <= m * suc n <-> ~m * suc n < suc 0 |
5 |
|
mulpos |
0 < m * suc n <-> 0 < m /\ 0 < suc n |
6 |
5 |
conv lt |
suc 0 <= m * suc n <-> 0 < m /\ 0 < suc n |
7 |
|
id |
0 < m -> 0 < m |
8 |
|
lt01S |
0 < suc n |
9 |
8 |
a1i |
0 < m -> 0 < suc n |
10 |
7, 9 |
iand |
0 < m -> 0 < m /\ 0 < suc n |
11 |
6, 10 |
sylibr |
0 < m -> suc 0 <= m * suc n |
12 |
|
an3l |
0 < m /\ 0 < 1 /\ A. x (0 < x /\ x <= n -> x || m) /\ suc (m * suc n) || 1 -> 0 < m |
13 |
11, 12 |
syl |
0 < m /\ 0 < 1 /\ A. x (0 < x /\ x <= n -> x || m) /\ suc (m * suc n) || 1 -> suc 0 <= m * suc n |
14 |
4, 13 |
sylib |
0 < m /\ 0 < 1 /\ A. x (0 < x /\ x <= n -> x || m) /\ suc (m * suc n) || 1 -> ~m * suc n < suc 0 |
15 |
|
d1ne0 |
1 != 0 |
16 |
15 |
conv d1 |
suc 0 != 0 |
17 |
16 |
a1i |
0 < m /\ 0 < 1 /\ A. x (0 < x /\ x <= n -> x || m) /\ suc (m * suc n) || 1 -> suc 0 != 0 |
18 |
|
anr |
0 < m /\ 0 < 1 /\ A. x (0 < x /\ x <= n -> x || m) /\ suc (m * suc n) || 1 -> suc (m * suc n) || 1 |
19 |
18 |
conv d1 |
0 < m /\ 0 < 1 /\ A. x (0 < x /\ x <= n -> x || m) /\ suc (m * suc n) || 1 -> suc (m * suc n) || suc 0 |
20 |
17, 19 |
dvdle |
0 < m /\ 0 < 1 /\ A. x (0 < x /\ x <= n -> x || m) /\ suc (m * suc n) || 1 -> suc (m * suc n) <= suc 0 |
21 |
20 |
conv lt |
0 < m /\ 0 < 1 /\ A. x (0 < x /\ x <= n -> x || m) /\ suc (m * suc n) || 1 -> m * suc n < suc 0 |
22 |
3, 14, 21 |
sylc |
0 < m /\ 0 < 1 /\ A. x (0 < x /\ x <= n -> x || m) /\ suc (m * suc n) || 1 -> ~n e. pset (m, 1) |
23 |
2, 22 |
sylbi |
n e. pset (m, 1) -> ~n e. pset (m, 1) |
24 |
1, 23 |
ax_mp |
~n e. pset (m, 1) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)