theorem mulpos (a b: nat): $ 0 < a * b <-> 0 < a /\ 0 < b $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | lt01 | 0 < a * b <-> a * b != 0 | 
        
          | 2 |  | lt01 | 0 < a <-> a != 0 | 
        
          | 3 |  | con3 | (a = 0 -> a * b = 0) -> ~a * b = 0 -> ~a = 0 | 
        
          | 4 | 3 | conv ne | (a = 0 -> a * b = 0) -> a * b != 0 -> a != 0 | 
        
          | 5 |  | mul01 | 0 * b = 0 | 
        
          | 6 |  | muleq1 | a = 0 -> a * b = 0 * b | 
        
          | 7 | 5, 6 | syl6eq | a = 0 -> a * b = 0 | 
        
          | 8 | 4, 7 | ax_mp | a * b != 0 -> a != 0 | 
        
          | 9 | 2, 8 | sylibr | a * b != 0 -> 0 < a | 
        
          | 10 | 1, 9 | sylbi | 0 < a * b -> 0 < a | 
        
          | 11 |  | lt01 | 0 < b <-> b != 0 | 
        
          | 12 |  | con3 | (b = 0 -> a * b = 0) -> ~a * b = 0 -> ~b = 0 | 
        
          | 13 | 12 | conv ne | (b = 0 -> a * b = 0) -> a * b != 0 -> b != 0 | 
        
          | 14 |  | mul02 | a * 0 = 0 | 
        
          | 15 |  | muleq2 | b = 0 -> a * b = a * 0 | 
        
          | 16 | 14, 15 | syl6eq | b = 0 -> a * b = 0 | 
        
          | 17 | 13, 16 | ax_mp | a * b != 0 -> b != 0 | 
        
          | 18 | 11, 17 | sylibr | a * b != 0 -> 0 < b | 
        
          | 19 | 1, 18 | sylbi | 0 < a * b -> 0 < b | 
        
          | 20 | 10, 19 | iand | 0 < a * b -> 0 < a /\ 0 < b | 
        
          | 21 |  | lteq1 | a * 0 = 0 -> (a * 0 < a * b <-> 0 < a * b) | 
        
          | 22 |  | mul0 | a * 0 = 0 | 
        
          | 23 | 21, 22 | ax_mp | a * 0 < a * b <-> 0 < a * b | 
        
          | 24 |  | ltmul2 | 0 < a -> (0 < b <-> a * 0 < a * b) | 
        
          | 25 | 24 | anwl | 0 < a /\ 0 < b -> (0 < b <-> a * 0 < a * b) | 
        
          | 26 |  | anr | 0 < a /\ 0 < b -> 0 < b | 
        
          | 27 | 25, 26 | mpbid | 0 < a /\ 0 < b -> a * 0 < a * b | 
        
          | 28 | 23, 27 | sylib | 0 < a /\ 0 < b -> 0 < a * b | 
        
          | 29 | 20, 28 | ibii | 0 < a * b <-> 0 < a /\ 0 < b | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)