Theorem ltmul2 | index | src |

theorem ltmul2 (a b c: nat): $ 0 < a -> (b < c <-> a * b < a * c) $;
StepHypRefExpression
1 lteq
b * a = a * b -> c * a = a * c -> (b * a < c * a <-> a * b < a * c)
2 mulcom
b * a = a * b
3 1, 2 ax_mp
c * a = a * c -> (b * a < c * a <-> a * b < a * c)
4 mulcom
c * a = a * c
5 3, 4 ax_mp
b * a < c * a <-> a * b < a * c
6 ltmul1
0 < a -> (b < c <-> b * a < c * a)
7 5, 6 syl6bb
0 < a -> (b < c <-> a * b < a * c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)