Theorem lemul1 | index | src |

theorem lemul1 (a b c: nat): $ 0 < c -> (a <= b <-> a * c <= b * c) $;
StepHypRefExpression
1 bieq
(a <= b <-> ~b < a) -> (a * c <= b * c <-> ~b * c < a * c) -> (a <= b <-> a * c <= b * c <-> (~b < a <-> ~b * c < a * c))
2 lenlt
a <= b <-> ~b < a
3 1, 2 ax_mp
(a * c <= b * c <-> ~b * c < a * c) -> (a <= b <-> a * c <= b * c <-> (~b < a <-> ~b * c < a * c))
4 lenlt
a * c <= b * c <-> ~b * c < a * c
5 3, 4 ax_mp
a <= b <-> a * c <= b * c <-> (~b < a <-> ~b * c < a * c)
6 ltmul1
0 < c -> (b < a <-> b * c < a * c)
7 6 noteqd
0 < c -> (~b < a <-> ~b * c < a * c)
8 5, 7 sylibr
0 < c -> (a <= b <-> a * c <= b * c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)