theorem lemul2 (a b c: nat): $ 0 < a -> (b <= c <-> a * b <= a * c) $;
Step | Hyp | Ref | Expression |
1 |
|
leeq |
b * a = a * b -> c * a = a * c -> (b * a <= c * a <-> a * b <= a * c) |
2 |
|
mulcom |
b * a = a * b |
3 |
1, 2 |
ax_mp |
c * a = a * c -> (b * a <= c * a <-> a * b <= a * c) |
4 |
|
mulcom |
c * a = a * c |
5 |
3, 4 |
ax_mp |
b * a <= c * a <-> a * b <= a * c |
6 |
|
lemul1 |
0 < a -> (b <= c <-> b * a <= c * a) |
7 |
5, 6 |
syl6bb |
0 < a -> (b <= c <-> a * b <= a * c) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)