theorem lemul2 (a b c: nat): $ 0 < a -> (b <= c <-> a * b <= a * c) $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | leeq | b * a = a * b -> c * a = a * c -> (b * a <= c * a <-> a * b <= a * c) | 
        
          | 2 |  | mulcom | b * a = a * b | 
        
          | 3 | 1, 2 | ax_mp | c * a = a * c -> (b * a <= c * a <-> a * b <= a * c) | 
        
          | 4 |  | mulcom | c * a = a * c | 
        
          | 5 | 3, 4 | ax_mp | b * a <= c * a <-> a * b <= a * c | 
        
          | 6 |  | lemul1 | 0 < a -> (b <= c <-> b * a <= c * a) | 
        
          | 7 | 5, 6 | syl6bb | 0 < a -> (b <= c <-> a * b <= a * c) | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)