Theorem ltmuld | index | src |

theorem ltmuld (G: wff) (a b c d: nat):
  $ G -> a < b $ >
  $ G -> c < d $ >
  $ G -> a * c < b * d $;
StepHypRefExpression
1 lemul1a
a <= b -> a * c <= b * c
2 ltle
a < b -> a <= b
3 hyp h1
G -> a < b
4 2, 3 syl
G -> a <= b
5 1, 4 syl
G -> a * c <= b * c
6 ltmul2
0 < b -> (c < d <-> b * c < b * d)
7 lelttr
0 <= a -> a < b -> 0 < b
8 le01
0 <= a
9 7, 8 ax_mp
a < b -> 0 < b
10 9, 3 syl
G -> 0 < b
11 6, 10 syl
G -> (c < d <-> b * c < b * d)
12 hyp h2
G -> c < d
13 11, 12 mpbid
G -> b * c < b * d
14 5, 13 lelttrd
G -> a * c < b * d

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)