theorem lelttr (a b c: nat): $ a <= b -> b < c -> a < c $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lesuc | a <= b <-> suc a <= suc b |
|
| 2 | letr | suc a <= suc b -> suc b <= c -> suc a <= c |
|
| 3 | 2 | conv lt | suc a <= suc b -> b < c -> a < c |
| 4 | 1, 3 | sylbi | a <= b -> b < c -> a < c |