Theorem lelttr | index | src |

theorem lelttr (a b c: nat): $ a <= b -> b < c -> a < c $;
StepHypRefExpression
1 lesuc
a <= b <-> suc a <= suc b
2 letr
suc a <= suc b -> suc b <= c -> suc a <= c
3 2 conv lt
suc a <= suc b -> b < c -> a < c
4 1, 3 sylbi
a <= b -> b < c -> a < c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, add0, addS)