theorem cbvald {x y: nat} (G: wff) (p: wff x) (q: wff y):
  $ G /\ x = y -> (p <-> q) $ >
  $ G -> (A. x p <-> A. y q) $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | cbvals | A. x p <-> A. y [y / x] p | 
        
          | 2 | 1 | a1i | G -> (A. x p <-> A. y [y / x] p) | 
        
          | 3 |  | sbet | A. x (x = y -> (p <-> q)) -> ([y / x] p <-> q) | 
        
          | 4 |  | hyp h | G /\ x = y -> (p <-> q) | 
        
          | 5 | 4 | ialda | G -> A. x (x = y -> (p <-> q)) | 
        
          | 6 | 3, 5 | syl | G -> ([y / x] p <-> q) | 
        
          | 7 | 6 | aleqd | G -> (A. y [y / x] p <-> A. y q) | 
        
          | 8 | 2, 7 | bitrd | G -> (A. x p <-> A. y q) | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12)