Theorem psetfn | index | src |

theorem psetfn {a x: nat} (p: wff x) (v: nat x):
  $ finite {x | p} -> E. a A. x (p -> pset a @ x = v) $;
StepHypRefExpression
1 expset
finite ((\ y, N[y / x] v) |` {x | p}) <-> E. a pset a == (\ y, N[y / x] v) |` {x | p}
2 finlam
finite {x | p} -> finite ((\ y, N[y / x] v) |` {x | p})
3 1, 2 sylib
finite {x | p} -> E. a pset a == (\ y, N[y / x] v) |` {x | p}
4 nfsv
FS/ x pset a
5 nfsbn1
FN/ x N[y / x] v
6 5 nflam
FS/ x \ y, N[y / x] v
7 nfab1
FS/ x {x | p}
8 6, 7 nfres
FS/ x (\ y, N[y / x] v) |` {x | p}
9 4, 8 nfeqs
F/ x pset a == (\ y, N[y / x] v) |` {x | p}
10 appeq1
pset a == (\ y, N[y / x] v) |` {x | p} -> pset a @ x = ((\ y, N[y / x] v) |` {x | p}) @ x
11 10 anwl
pset a == (\ y, N[y / x] v) |` {x | p} /\ p -> pset a @ x = ((\ y, N[y / x] v) |` {x | p}) @ x
12 eqtr3
(\ x, v) @ x = (\ y, N[y / x] v) @ x -> (\ x, v) @ x = v -> (\ y, N[y / x] v) @ x = v
13 appeq1
\ x, v == \ y, N[y / x] v -> (\ x, v) @ x = (\ y, N[y / x] v) @ x
14 cbvlams
\ x, v == \ y, N[y / x] v
15 13, 14 ax_mp
(\ x, v) @ x = (\ y, N[y / x] v) @ x
16 12, 15 ax_mp
(\ x, v) @ x = v -> (\ y, N[y / x] v) @ x = v
17 applam
(\ x, v) @ x = v
18 16, 17 ax_mp
(\ y, N[y / x] v) @ x = v
19 abid
x e. {x | p} <-> p
20 resapp
x e. {x | p} -> ((\ y, N[y / x] v) |` {x | p}) @ x = (\ y, N[y / x] v) @ x
21 19, 20 sylbir
p -> ((\ y, N[y / x] v) |` {x | p}) @ x = (\ y, N[y / x] v) @ x
22 21 anwr
pset a == (\ y, N[y / x] v) |` {x | p} /\ p -> ((\ y, N[y / x] v) |` {x | p}) @ x = (\ y, N[y / x] v) @ x
23 18, 22 syl6eq
pset a == (\ y, N[y / x] v) |` {x | p} /\ p -> ((\ y, N[y / x] v) |` {x | p}) @ x = v
24 11, 23 eqtrd
pset a == (\ y, N[y / x] v) |` {x | p} /\ p -> pset a @ x = v
25 24 exp
pset a == (\ y, N[y / x] v) |` {x | p} -> p -> pset a @ x = v
26 9, 25 ialdh
pset a == (\ y, N[y / x] v) |` {x | p} -> A. x (p -> pset a @ x = v)
27 26 eximi
E. a pset a == (\ y, N[y / x] v) |` {x | p} -> E. a A. x (p -> pset a @ x = v)
28 3, 27 rsyl
finite {x | p} -> E. a A. x (p -> pset a @ x = v)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)