Step | Hyp | Ref | Expression |
1 |
|
expset |
finite ((\ y, N[y / x] v) |` {x | p}) <-> E. a pset a == (\ y, N[y / x] v) |` {x | p} |
2 |
|
finlam |
finite {x | p} -> finite ((\ y, N[y / x] v) |` {x | p}) |
3 |
1, 2 |
sylib |
finite {x | p} -> E. a pset a == (\ y, N[y / x] v) |` {x | p} |
4 |
|
nfsv |
FS/ x pset a |
5 |
|
nfsbn1 |
FN/ x N[y / x] v |
6 |
5 |
nflam |
FS/ x \ y, N[y / x] v |
7 |
|
nfab1 |
FS/ x {x | p} |
8 |
6, 7 |
nfres |
FS/ x (\ y, N[y / x] v) |` {x | p} |
9 |
4, 8 |
nfeqs |
F/ x pset a == (\ y, N[y / x] v) |` {x | p} |
10 |
|
appeq1 |
pset a == (\ y, N[y / x] v) |` {x | p} -> pset a @ x = ((\ y, N[y / x] v) |` {x | p}) @ x |
11 |
10 |
anwl |
pset a == (\ y, N[y / x] v) |` {x | p} /\ p -> pset a @ x = ((\ y, N[y / x] v) |` {x | p}) @ x |
12 |
|
eqtr3 |
(\ x, v) @ x = (\ y, N[y / x] v) @ x -> (\ x, v) @ x = v -> (\ y, N[y / x] v) @ x = v |
13 |
|
appeq1 |
\ x, v == \ y, N[y / x] v -> (\ x, v) @ x = (\ y, N[y / x] v) @ x |
14 |
|
cbvlams |
\ x, v == \ y, N[y / x] v |
15 |
13, 14 |
ax_mp |
(\ x, v) @ x = (\ y, N[y / x] v) @ x |
16 |
12, 15 |
ax_mp |
(\ x, v) @ x = v -> (\ y, N[y / x] v) @ x = v |
17 |
|
applam |
(\ x, v) @ x = v |
18 |
16, 17 |
ax_mp |
(\ y, N[y / x] v) @ x = v |
19 |
|
abid |
x e. {x | p} <-> p |
20 |
|
resapp |
x e. {x | p} -> ((\ y, N[y / x] v) |` {x | p}) @ x = (\ y, N[y / x] v) @ x |
21 |
19, 20 |
sylbir |
p -> ((\ y, N[y / x] v) |` {x | p}) @ x = (\ y, N[y / x] v) @ x |
22 |
21 |
anwr |
pset a == (\ y, N[y / x] v) |` {x | p} /\ p -> ((\ y, N[y / x] v) |` {x | p}) @ x = (\ y, N[y / x] v) @ x |
23 |
18, 22 |
syl6eq |
pset a == (\ y, N[y / x] v) |` {x | p} /\ p -> ((\ y, N[y / x] v) |` {x | p}) @ x = v |
24 |
11, 23 |
eqtrd |
pset a == (\ y, N[y / x] v) |` {x | p} /\ p -> pset a @ x = v |
25 |
24 |
exp |
pset a == (\ y, N[y / x] v) |` {x | p} -> p -> pset a @ x = v |
26 |
9, 25 |
ialdh |
pset a == (\ y, N[y / x] v) |` {x | p} -> A. x (p -> pset a @ x = v) |
27 |
26 |
eximi |
E. a pset a == (\ y, N[y / x] v) |` {x | p} -> E. a A. x (p -> pset a @ x = v) |
28 |
3, 27 |
rsyl |
finite {x | p} -> E. a A. x (p -> pset a @ x = v) |